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A NEW LOOK AT THE STATISTICAL PATTER RECOGNITION

C, H. CHEN
DEPARTMENT OF ELECTRICAL ENGINEERING

SOUTHEASTERN MASSACHUSETTS UNIVERSITY
NORTH DARTMOUTH, MASSACHUSETTS 02747

ABSTRACT

It has now been twenty years since the publication of the original paper,."An
Optimum Character Recognition System Using Decision Function" by C. K, Chow in IRE
Trans. on Electronic Computer in 1957, in which he formulated pattern recognition as
a problem of statistical decision theory. During the last two decades, statistical
pattern recognition was well developed in theory and applications with the peak ace
tivity in the late sixties. The area has now reached a fairly saturated condition .
ags its capability and limitations are well explored. The limitations are obvious:
the patterns are not characterized by the statistical information alone and many use-
ful statistical properties cammot be fully developed with available mathematical sta-
tistics, The paper outlines important but unsolved problem areas in statistical pat-
tern recognition and then takes a new and close look at some problems which are re-
lated to the finite sample size constraint. In an effort to bridge the gap between
theory and practice, constructive solutions are provided for the problems: finite
sample distance and information measures, finite sample nearest neighbor decision
rule, contextual analysis, decision rules based on discrete and continuous measure-
ments, and the finite sample stochastic syntax analysis. It is concluded that there
are still many challenging problems to be solved in statistical pattern recognition
and every effort should be made such that the theory works well in practice.




g A New Look at the Statistical Pattern Recognition

1. Introduction

It has now been twenty years since the publication of the original paper, *“An
Optimum Character Recognition System Using Decision Function" by C.K. Chow in IRE
Trans. on Electronic Computer in 1957, in which he first formulated pattern
recognit?_ion,u_a problem of statistical decision theory. During the last two decadec
atatis;i;.:al pattern recognition was vell developed in theory and spplications with
peak activity in late sixties. The area has now reached a fairly saturated condition
as its capability and limitations are well explored. The limitations are obv:ious:
the patterns are not characterized by statistical information alone and even some
important statistical properties camnot be developed with available mathematical
statistics. This situation has been quite typical with the application of every
branch of mathematics. However for researchers new or old to this area there are
still many challenging problems remaining to be solved. In {1], ten problem areas
where the solutions are .. wanted are listed, not necessarily in the order of
importance, as: feature extraction, nonstationary patterns, adaptive systems,
learning complexity, finite sample size effects, computational recoguition
complexity, contextual analysis, optimum pattern recognizer, statistical and
syntactic mixed model, and the automatic gemeration of recognition rules for
complex patterns. It is hoped that good solutions to some of these problems will
become available in the next decade.

It is not intended to survey the area, which is now quite broad, in this paper.
Many books and articles have done this survey well. Instead the paper takes a new
and close look at certain problems in statistical pattern recognition and offers
some constructive solutions. Particular attcntion’z 1n“giv¢n cob bridging the ivido
2ap between theory and practice, notably the problems of finite sample constraint.
II. Finite Semple Diststce !Masures | |

Distance measures are useful for feature selection and extraction and for
error bondo of Bayes error probability (see e.g. [2], Chapter 4). They have been
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extensively examined in recent years under the assumption of large sample
size. In practice the sample size may be limited or small and many conclusions
dravn under infinite sample assumption may not be valid under finite sample con-
straint (3]. The discussion here will be limited to Gaussian messurements for
divergence and Bhattacharyya distance but can be easily extended to other cases.
Consider first the case of two umivariate Gaussian densities with means -
and m, and the same variance o°. Lest """ denote the  quentity evalusted by using
the sample estimates. Then the differemnce in divergence between infinite sample and

finite sample sizes is

J--J----l(-1 ‘2) - (my - lz)l t3n7a Ml ~ (1)
where we have assumed that az is known.: The expected vaiue of the differmce
1
B(J-J)--—+——>0 : 2)
Nl Nz

is always positive where Nl and Nz denote the numbers of samples for classes 1 and
2 respectively. It is also assumed that all samples are statistically independent. ]
The positive bias given by Eq. (2) indicates that the divergence evaluated by
using a finite number of samples can lead to an over optiministic estimate of the
error probability.
Next consider the univariate Gaussian densities with zero means and variances
crl and o’z The divergence based on the sample estimated parameters is

~2 ~2 ‘
Is <y .0_3_ -1 ' ' - : 3) ;
2; 0] _ e A

The ratio w q;ilc;i has the P-distribution with (.1' uz) degrees of freedom. The
expected error dus to the finite sample size is - Lol

2 2 . & .
4 ’ o P 3 - £ 8 v
m-.r)-a: " b § oy 1 i b
2 Bt 033

where the positive bias can l_n _ guiﬂ.‘cqt‘ for small sample sizes.
The Bhattacharyya distance based on the sample astimated parameters is

? 9, o . 2,
Bedlopd (A +:yatiog il
s o (0% s ve%) @




e e o

~3-

By using the Taylor series expansion of B with respect to the true value B, and

retaining terms up to the second order in the expression, we obtain

2 °§ 2 °i 2
§B~ B = Gy
lo(cv2 + ol) 2
al' + 20202 - 04 NZ(N + 2)
+ttll - Py ! i
8(c; + 07) 2 Y2 %2 -
2
o
which 1s negative for -!2‘- 214+ Y2 and positive otherwise. As the sample sizes
g
2

approach =, the bias is not zero because of the series truncation. However, the
sample size effect is evident from Eq. (6).

Now consider the mltiﬁriate Gaussian densities for é—dimensional measurements.
Let il and I'{z be the sample mean vectors corresponding to the true mean vectors
u and ¥y of classes 1 and 2 respectively. Also let S be the sample estimate of

the common covariance matrix [ given by
N N, +N

1 1z
1 g sin & 3 = ‘- By
§9 gepieie I'F (R~ 38 ~ X3 & (X = Z)E -2} (D
Ny ¥, -2 g_l Tl et 1-NE+1 0

where X is the vector measurement from either class 1 or class 2.

For infinite sample case the divergence is

1 :
= - ' -

Jo= (ug - up)' I < uy) (8)
which is the same as the iiahalanobis distance. The divergence using sample
estimated parameters is

2 = = -1 = =

= (X, - ' -

J= & - X))@ -X) @
where E[S] = Z The covariance matrix of 21 - iz is

By -y = T+ -y - Ry ') = TG )

let k = 3+ 2 . The random varisble J/k has Hotelling's T° mon-null distributiion
: M

(see e.g. [4]‘) with Nl + 1!2 samples and p degree of freedom given by

N L R 1
(e, Dadae 5. S, e
P kl k =0 Te n(% +r, __g_"'i)
~ L ' : : (10,
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where f is the degree of freedom of S. By using the formula

-1
r xu v dx = B(U, V‘u)
A 1+ x)

the expectation of J can be written as

M - kfp £J
E[J] £f-p+1 +f-p+_1

(11)

For p= 1, then £ = 1 aNd Eq. (11) is the same as Eq. (2). For p>1, B(j) differs

from J not only by an additive term depending on sample size but also by a multi~

plicative constant independent of the gsample sizes. The undesired effect of
finite sample size is quite evident from Eq. (11). For equal mean but unequal
covariance case the Bhattacharyya dis;ance experiences the same effect as

divergence since B = J/8.

For two multivariate Gaussian densities with zero mean vectors and covariance

matrices 21 and Zz whose unbiased estimates are V, and Vz respectively, the

1
divergence based on sample estimated parameters is

S -1 -1

J E-tr(ViVé + v2v1 )-p
Since the measurements from the two classes are independent,

3 1 -1 ~1.4 _

E[J] = 3 tr{E(V))E(V,”) + E(V,)E(V;)} ~ p

Both Vi and V;l follow the Wishart distributions with expectations
N
~1

SARBE Ll S

Thus

N N
% 1 2 1 1 1
E[J] = 7 tx( ﬁ;':'p - 1 Zl Z; ki Ny-p-1 ZZ Z; )

[ 1=1,2

1 b A, 5
"”"z'“"nz p-lzlz- N-p-lZZZ—

where the bias:tern coincides with Eq. (4) for p = 1, i.e. the univariate case.
The above discussion clearly illustrates the effect pf finite sample on the

bias of estimated distance measures. .The variance of sucﬁ estimates may also be

determined. In general the estimated divurgencéﬂﬁas positivé bias while the

behavior of Bhattacharyya distance is less prodictablo.:

a2)

(13)

(14)

- (15)
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III. Finite Sample Information Measures

For feature selection, more informative features result in low classification
errors. However, if the sample size is limited, information measures estimated
from samples may not be as effective. Consider the equivocation for m classes
defined as

m
H= - E[ i211’(.»1/1() log P(wy/X)] (16)

where P(m1/X) =P, is the a posteriori probability of the ith class and the
expectation is taken with respect to the space of X.

The sample-based equivocation using the estimated a posteriori probability

P1 is
2 1 A A
H=-E[ S P, logP,] : (17)
i i
i=1
let ei be the parameter of the ith class, and ei its estimate. Assume that the

effect due to sample size is small so that we need consider only the first two

terms in the Taylor series expansion of Pi’

~ ' -~ 15
P, = P, +Pi(8; - 6,) (18)
where Pi is the partial derivative of P1 with respect to 6y evaluated at ei = ei.
The difference between the estimated and true equivocations can be written as
m
~ ~ ~ 2
H-H=E 121 [Pi(e, - 6,)(1L + log P,) + Pi(e, - 0,)"] (19)

which is still a function of 81. If 81 is an unbiased estimate of 91. then the
expectation of the difference with respect to the estimated parameter depends only
on the variance of 81 which is usually inversely proportional to the sample size.
The variance of ﬁ given by E(ﬁ - E(ﬁ))2 where the expectations are with respect

to 8 can be shown to be proportional also to the variance of 91 or inversely

i
proportional to the sample size. For the Renyi's informstion, it has been shown

[5] asymptotically that the sample estimate of the information can have a variance
of the order of the reciprocal of the squared sample size under certain conditionm.

Thus the equivocation estimated under finite sample can be quite inaccurate.
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IV. Finite Sample Nearest-Neighbor Decision Rule

The nearest-neighbor decision rule (IWNDR) is attractive in the sense that the
NN-risk is upper bounded bf twice the Bayes risk when the sample size approaches
infinity. For a given sample size the 1-NNDR is uniformly better than the kn-NNDR.
The small sample NNDR performance has been considered for the restrictive cases:
Fix and Hodges [6] investigated the small sample performance for kh-NNDR for
univariate and bivariate normal distributions; Levine et.al. [7] showed that the
performance for small sample sets from uniform distributions is close to its
asymptotic value. For multivariate Gaussian densities and allowing the sample size
to increase with k, it is shown [8] numerically that the k-NNDR has a very close
performance as the Bayes linear discriminant analysis. This result is significant
in the sense that under finite sample condition the NNDR 1s comparable to the Bayes
rule using estimated parameters. For a given set of n samples with known
classification, it would be more meaningful to compare different decision rules
using the n samples rather than to compare with Bayes rule under infinite sample
size assumption. For the Gaussian assumption the NNDR is very competitive with
other decision rules based on the results of [8].

In practical use of nearest-neighbor rule, the large number of samples would
require large amount of storage and computation. lMethods for reducing the
computation requirement and editing the samples have been considered. It has been
established experimentally that there is always a small subset of good learning
samples that dominate the performance. In other words the performance would be
insensitive to sample size for good quality neighbors. This idea is somewhat
similar to the edited NNDR which attempts to eliminate samples on the wrong side
of decisicn boundary.

The fundamental question whether the Euclidean distance is most effective
in NNDR has not been resolved. Experimental results based on some weighted
Euclidean distance have indicated better recognition performance than on

Euclidean distance. If the samples are close to be normally distributed, a better
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distance computation makes use of the covariance matrix for each class, i.e. for

each neighbor P(i)

belonging to the ith- class, compute the squared distance

@ - 2t - 21y - &2 (20)
and choose the class which provides the minimum di. The Euclidean distance may
be considered as a special case of Eq. (20) by setting Vi = I. If the nearest-
neighbor is considered as the reference point of a class then for the minimum
distance classifier provided by the Euclidean distance NNDR, there exists a linear
decision function, obtained by using common convariance matrix, which is at least
as good according to the classification theory (Chapter 2 of [2]). 1If the
covariance matrices are quite unequal then the quadratic classifier provided by
Eq. (20) is better than the linear classifier. Exactly how much better is a
question better answered experimentally. Recent investigation with the seismic
data [9] has shown that the modified distance given by Eq. (20) provides more than
15% improvement in the percentage correct recogniticn than the Euclidean distance
NNDR. Of course the sample size must be large enough to calculate the covariance
matrices accurately.

In summary, the NNDR is an effective and reliable decision rule for finite
sample size condition. Especially for small sample size when a good estimate
of parametric density is not available, the NNDR should be used.-
V. Contextual Analysis

A major weakness of statistical pattern recognition is the difficulty to take
the contextual relations into account in the recognition process. Character
recognition is not considered here as it requires somewhat different contextual
analysis [10]. An imagery pattern is rich in contextual information part of which
is statistical in nature. A formal statistical approach to this problem is the
compound decision theory. The finite sample constraint in digital imagery
patterns is caused by limited number of images and the limitation in spatial

resolution. In image interpretation and classification, an image is usually
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partitioned into a number of subimages. A vector measurement may be taken'from
each subimage. By assuming dependence on the'neareot four neighbor subimages,

the compound decision rule is to choo-se the class which maximizes (wk. “'_1 ® 1,2,000

m)
4

P(X /uy )P () jfl u%. I’(Kj /wj)P(wj,bk) (21)
which is adapted from the last equation on page 201 of [2). Here xk is the vector

measurement for the kth subimage. Notice that the part of the expression outside
of the product sign is identical to that used in a simple maximum likelihood
decision rule without considering neighbor subimages at all. The product t-erm
represents the contextual information for the kth sulﬁ.nage. Each multiplier iz
the product term represents the contextual contribution from an adjacent neighbor

subimage. By rewriting the multiplier as
)

P(w /mk
% P(X, /0 )P(uy) -—Pi(m—r (22)

J
it is seen that computationally this is a weighted histogram of the subimage j,

with each class wj being weighted by the factor P(“’j /mk)/P(mj) which reflects

the dependence between two states of nature for twoc adjacent subimages k and j.
The accuracy of the weighted histogram is related to the performance of compound
decision rule given by Eq. (21). The sampling distribution of the weighted

histogram for q quantization levels and a total of n pixels for the jth subimage

is

I'a + q) ; P’ij
o (23)

where rij is the n=mber of pixels belonging to the ith quantization level. The

Bayes estimate of P:g’ the fractional number of pixels for the ith level is

A . P 1
add Ll
P " Ta+g (24)

By using Egqs. (21)-(24) and following the analysis of [11], an average probability

of correct recognition for the subimage k can be determined as a function of

sample eize (i.e. the number of pixels n), and the number of quantization levels q.

i,
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If we consider two classes only such as object (wk = 1) and background (wk = 2),
then the effect of contextual dependence appears as a multiplicative factor in the
likelihood ratio. A suboptimal - but much simpler scheme to determine such

factor is to compute
4 PG, = 1uy = V/BG = 1) + Py = 2/u, = 1)/PG, = 2)
J_lP(wj = llmk = 2)/P(Qj = 1) + P(wa = ZIwk = 2)/P(wJ = 2)

(25)

.8 the histograms computed for ali four neighbor subimages tend to cancel out in

the numerator and denominator. Other simple ways to profitably utilize the
statistical contextual information in image analysis should also be examined both
theoretically and experimentally.

VI. Decision Rules Based on Discrete and Continuous Measurements

Most pattern recognition work assumes either discrete or continuous measure-
ments (including measurement quantized from the continuous one). In image
recognition, it is possible to tentatively assign each subimage to one of several
possible classes, which is a discrete quantity, whiic the actual measurement of
the subimage is continuous. In the decision tree framework, an overall classifica-
tion: of the image may be made by using all the informations on each subimage
including the preliminary decision made on it. Similar situation arises in
medical diagnosis in which the final diagnosis depends on decisions made on some
tests and other continuous weasurements.

Recently, Krzanowski [12] considered the use of Fisher's linear discriminant
function for classification with a set of p continuous and q binary varisbles.
His work is immediately applicable to medical data. From the information provided
by the discrete variable, a likelihood ratio is formed on the continuous variable
and compared with a threshold determined by the discrete variable. For image
analysis, a decision or interpretation has to be made on an image containing a
number of subimages on which individual decision may be made first. A bottom-up
decision tree may be established to reach the best final decision. Inconsistent

decisions between two neighbor subimages may indicate the existence of an object
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boundary or an incorrect decision on one of them. Backtracking or error correction

mechanism may be added to the decision making process. The size of the subimage

should be chosen so that it is much smaller than the object size. The decision
process can be summarized as follows:

Step 1. Starting from the first subimage, compare its decision with all eight
neighbors. Proceed next with one of the subimage of same decision. If
no consistent decision is available, proceed with any neighbor.

Step 2. Examine the second subimage in the same mamner as Step 1. Repeat the
step as many times as needed until returning to the first subimage with
closed boundary. The desired object is located.

Step 3. If a closed boundary is not available after search and merge in Steps 1
and 2, then decision is made that the image does not contain the object.

0bv~iouigy other decision tree procedures can be established (see e.g. [13])
for the same objective. These procedures are much easier to implement than the
use of 'one shot" compound decision fumction.

VII. Finite Sample Stochastic Syntax Analysis

The production probabilities in stochastic syntax analysis [14] are usually
estimated from a set of distinct sample strings by frequency ratio. The limited
string sample size is a source of error in estimation and the final classification
performance. The error accumulates as a sequénce of production rules is applied.

The nonmonotonic relation between confidence for ;ij and éample size (page 181 of

[14]) is rather unexpected. To simplify the analysis, assume that M distinct

production rules have to be applied to complete a parse. Let e be the

3
difference between the estimated and true production probabilities, i.e.

| i 511 = Pyy (26;
Then E(eij) = 0, cov. (eijeik) = - pijpik/;’ j ¥ k where ne gnij with nij
defined by Eq. (6.4) of [14]. p1J approaches pij as the number of sample strings

t, 1.e. the sample size, approaches infinity. The value n is proportional to t.
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The likelihood function for the grammar of a given class 1is

M, M
Np,,= 0 (p,, +e,.)
jar 8 g 41T
which has the expected value
. . uet-1) o
E( 1 P:I.j) (. Pyye ™ T5C n Pyy + higher order terms (27)
j-l j=1 n j-]_

If we ignore the higher order terms then the likelihcod function based cn estimated
production probabilities is expected to be off from the true value by an amount
inversely proportional to the sample size and proportional to Mz . For long string
the accuracy of the likelihcod function may thus be very poor. The variance of
the likelihood function can also be determined. It appears that the only way to
reduce the finite sample effect is to increase the sample size.
VIII. Concluding Remarks
This paper has examined some current problems in statistical pattern
recognition especially the effects of finite sample size, which cause the gap
between theory and practice in pattern recognition. When the effects are
monotonic then the best way to reduce such effect is probably by increasing the
sample size. There are many other problems, as listed in Section I, in statistical
pattern recognition which remain to be studied also. Thus we believe the area
should remain to be an active one for researchers.
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